Dr.K.K.R GOWTHAM EDUCATIONAL INSTITUTIONS :: A.P & T.S

Class: 8-CO, F1 Sub: Maths, Physics, Chemistry

Time: 2 ½ Hrs

Objective type questions:

 $50 \times 2 = 100 \text{ M}$

Maths

1. If
$$\frac{Cosx}{a} = \frac{Sinx}{b}$$
 then a $Cos2x + bSin2x =$ _____

1

2.
$$\sin 20^{\circ} + \sin 40^{\circ} - \sin 80^{\circ} =$$

1

3.
$$\frac{3Cos\theta + Cos3\theta}{3Sin\theta - \sin 3\theta} = \underline{\hspace{1cm}}$$

ſ]

a.
$$\cos \theta$$

b.
$$Cot^3\theta$$

c.
$$Tan^3 \theta$$

d. Tan
$$\theta$$

4.
$$\frac{1}{Sin10^0} - \frac{\sqrt{3}}{Cos10^0} =$$

1

a. 4

5. If A = 580° then -
$$\sqrt{1 + \sin A}$$
 - $\sqrt{1 - \sin A}$ =

ſ 1

6. If
$$\operatorname{Sin^2} A + \operatorname{Sin^2} B = \operatorname{Sin^2} C$$
 then $C = \underline{C} = \underline{C}$

ſ 1

7. IF C = 60° then
$$\frac{a}{b+c} + \frac{b}{c+a} =$$

1

]

1

]

8. If
$$a = 3$$
, $b = 4$, $c = 5$ then Sin A/2=

1

a.
$$\frac{1}{\sqrt{10}}$$
 b. $\frac{2}{\sqrt{10}}$

b.
$$\frac{2}{\sqrt{10}}$$

c.
$$\frac{3}{\sqrt{10}}$$

d.
$$\frac{4}{\sqrt{10}}$$

9. If
$$3 \text{ TanA/2 TanC/2} = 1$$
 then a, b, c are in ______

[

10.
$$a^2 \sin 2c + c^2 \sin 2A =$$

a.
$$\Delta$$

c. 3
$$\Delta$$

d.
$$4\Delta$$

12.
$$\sum \frac{a}{s-a}$$
 (TanB/2 – TanC/2) =

a.
$$-\frac{1}{2}$$
 b. -1

13.
$$a Cos A + b Cos B + C cos C =$$

a.
$$\frac{\Delta}{R}$$

b.
$$\frac{R}{\Lambda}$$

c.
$$\frac{2\Delta}{R}$$

d.
$$\frac{4\Delta}{R}$$

26.Two blocks of masses table. The experimente If the block 'A' exerts	r pushes the block a	a from behind so	that the blocks	accelerat	te.
experimenter on A				[]
a. $F(1+\frac{m_2}{m_1})$	b. F $(1 + \frac{m_1}{m_2})$	c. F $(1-\frac{m_2}{m_1})$	d. F (2+ $\frac{m_2}{m_1}$?)	
27. When a toothpaste tube an example of	s is squeezed its sha	pe changes. The	force responsib	ole for thi	is is
a. Balanced forces	b. centripe	etal forces			
b. unbalanced forces	d. centrifu	golfoces			
28. The particles of mud flue to	y off tangentially fr	om the wheel of	a moving vehic	cle. This i	is]
a. Inertia of rest b. in	nertia of motion	c. inertia of di	irection d. b	ooth A &	В
29. Action and reaction				[]
a. Always exists in pai	c. a	lways action opp	osite direction		
b. Are equal in magnit	ude d. a	ll the above are t	rue		
30. The apparent weight of	a freely fallking bo	ody is		[]
a. Zero	b. increased	c. decreased	d. constar	nt	
31.A body of mass m falls in momentum during the			The magnitude of	of the cha	inge]
a. $Mg(h_1+h_2)$	b. m ($\sqrt{2}$ gh ₁ + $\sqrt{2}$	$\sqrt{2} gh_2$) c. m $\sqrt{2}$	$2 gh_1 - \sqrt{2} gh_2$	d. zer	О
32. A constant force of 0-2 m/s². Calculate t	acts on a body of notice the magnitude of fo			accelerat	ion
a. 1N	b. 2N	c. 3N	d. 4N		
33.A chain of lengh L and Find the tension in the				id suppor	t.]
a. $\left(1-\frac{x}{L}\right)Mg$	b. $\left(\frac{x}{L}\right)Mg$	c. $\left(1+\frac{x}{L}\right)Mg$	d. none ofth	nese	
34. A uniform rope of end of a force F. find the force applied	of length L resting one tension in the rop				
a. F	b. F/2	c. F/4	d. 3F/4		
35. A block of mass block of mass 0.3 kg su tension in the two strin					

b. 180NS

c. 45Ns

d. 360Ns

a. 60NS

	a. 5N & 3N	b. 2N & 3N	c. 3N & 4N		d. none of thes	e	
		Chen	nistry				
36.	The law of octaves w	as developed by			[]	
	a. Newlands	b. Mendeleef	c. Lother mayer		d. Dobereiner		
37.	Among s-block meta	ls and transition metals	s which are more metal	llic]]	
	a. s- block metals	b. Transition metals	c. both are equally m	etallic	d. cannot be Pred	icted	
38.	The highest oxidation	n state is shown by]]	
	a. Ru, Os	b. Fe, Os	c. W, Os	d. Re, N	Мо		
39.	Atomic Radius deper	nds upon]]	
	a. No. of bonds form	ed by the atom	b. Nature of bonding				
	c. Oxidation state of	the atom d. All	the above				
40.	Pair of ions with sim	ilar ionic radii]]	
	a. Li ⁺ , Mg ⁺²	b. Li ⁺ , Na ⁺	c. Mg ⁺² , Ca ⁺²	d. Mg ⁺²	2 , K^+		
41.	The element with the	highest electron affini	ty is]]	
	a. He	b. Li	c. Be d. B				
42.	Ionisation energy of	Mg to Mg ⁺² is 22.67 e.	v/atm. If the first Ionis	ation ene	ergy is 738kJ/Mol	, the	
	second Ionisation end	ergy of Magnesium in	(KJ/Mole)]]	
	a. 1448	b. 1702	c. 738	d. 1476			
43.	If Ionisation energy of	of fluorine is 320 kJ/mo	ole then the electron af	finity of	fluorine will be[]	
	a320 k.J/mole	b160 k.J / n	nole c. 320 k.J/mo	le	d. 160 k.J/mole		
44.	The electronegativity	values according to M	Iulliken scale are	tim	es the values in P	auling	
	scale						
	a. 0.208	b. 2	c. 2.8	d. 544	[]	
45.	The Ionisation energy and electron affinity of an element are 13.0 ev and 3.8 ev respectively its						
	electronegativity is]]	
	a. 2.8	b. 3.0	c. 3.5	d. 4.0			
46.	The most electroposi	tive element is]]	
	a. I	b. Mg	c. Cs	d. Li			
47.	Least acidic among t	he following is]]	
	a. SiO ₂	b. Co ₂	c. P ₄ O ₁₀	d. N ₂ O ₂	5		
48.	Aluminium is diagon	ally related to			[]	
	a. Li	b. Be	c. C	d. B			
49.	A metal forms a chloride with the formula MCl ₂ Formula of Phosphoric acid is H ₃ PO ₄ . Formula of						
	the phosphate of the	metal is]]	

50.	IP ₁ value of chlorine is 12eV and electron affinity of chlorine is 3.6 eV number of chlorine atoms in						
	the gaseous state	that can be ionised	l by utilising the energy th	at is liberated in the Pro	ocess Cl _{(g})+e ⁻ —	
	Cl ⁻ (g) involving o	ne mole of chloring	e atoms is		[]	
	a. 1.3×10^{23}	b. 3	c. 3×10^{23}	d. 1.8×10^{22}			